New Year's Resolutions:

Working w/Satellite Data

January 24th, 2017

Follow along here: https://github.com/MaptimeNYC/working-with-satellite-data

Geographic Data 101

2 Types:

  1. Vector
  2. Raster

Vector

Vector represents real-world objects (buildings, rivers, streets, GPS points). Geometries are defined by the vertices that make points, lines, & polygons.

Common Vector Data Formats

  • GeoJSON
  • Shapefile

Vector Example

Raster

  • Rows and columns of cells (or pixels) create a grid of data
  • Cells hold values (temperature, elevation, red/green/blue color)
  • Grids organized into bands (channels) that can overlay multiple different types of values
  • Size of each cell makes the dataset's resolution

Common Raster Data Formats

  • GeoTiff
  • ...?

Digital Elevation Model

Temperature Data

MPG Ranch Restoration Map

Landsat

  • Joint effort by NASA and USGS
  • Conceived in 1965
  • Landsat 1 Launched 1972
  • Public Earth science datasets for 44+ years!
Nasa Worm Logo USGS Logo

Landsat Mission

“Landsat 9 [will] propel the program past 50 years of collecting global land cover data,” said Jeffrey Masek... “That’s the hallmark of Landsat: the longer the satellites view the Earth, the more phenomena you can observe and understand.”

Landsat8

  • Launched February 11, 2013
  • 11 bands
  • Each band from a different part of the electromagnetic spectrum
  • Visible spectrum < half of Landsat's data
  • Surveys entire Earth every ~16 days
  • Most bands are 30m resolution, Thermal-Infrared (bands 10,11) 100m resolution

Google Earth Engine

  • "Platform for planetary-scale environmental data analysis."
  • "May only be used for development, research, or educational purposes."
  • Includes a codepen-like script editor (Python or JS) for easily accessing Earth satellite datasets and the processing power of Google's cloud resources

Getting Started with Earth Engine

Adding Data

Use this Google data catalog to browse available datasets

In EE code editor, add the dataset to the map document:


							/* 1.  Add satellite data to map  */
							Map.addLayer(
							  //  add collection of raw Landsat8 data
							  ee.ImageCollection('LANDSAT/LC8_L1T')
							);
						

Zoom to Location

(below previous code in EE code editor)


							/* 2.  Center map on Indian Point (longitude, latitude, zoom) */
							Map.setCenter(-73.954661, 41.269739, 15);
						

Filter Datasets


							/*  Filter by a vector(!!!) geometry */
							var indianPoint = ee.Geometry.Point(-73.954661, 41.269739);

							var filteredCollection = ee.ImageCollection('LANDSAT/LC8_L1T')
							  .filterBounds(indianPoint);

							Map.addLayer(filteredCollection);
						

Filter Datasets By Time


							/*  Filter by a vector(!!!) geometry */
							var indianPoint = ee.Geometry.Point(-73.954661, 41.269739);

							var filteredCollection = ee.ImageCollection('LANDSAT/LC8_L1T')
								.filterBounds(indianPoint)
								.filterDate('1990-01-01', '1990-05-31');

							Map.addLayer(filteredCollection);
						

Visualizing Vegetation

By combining different bands of Landsat data, you can visualize the otherwise non-visible data

See here for examples of band combinations


							/*  Add band visualizing 5-4-3 (infrared) */
							Map.addLayer(
								ee.ImageCollection('LANDSAT/LC8_L1T'),
								{'min': 6000, 'max': 18000, 'bands': ['B5', 'B4', 'B3']});
						

BEAUTIFUL 5-4-3 Image!